Agitation And Mixing of Liquids

Standard design of turbine impeller:
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Measurements of turbine, (After Rushton et al*%)

Flow number (N, ):
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FIGURE 9.8
Velocity vectors at tip of turbine impeller blade.

The flow number N, may be considered constant. For the design of
bafiled agitated vessels the following values are recommended:

For marine propellers  (square pitch) Ny =05
For a four-blade 45° turbine  (W/D, =} Ny =087




RELATIVE RADIAL VELOCITY OR FLOW RATE
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© Radial velocity V) /u, and volumetric fiow rate g/gy

in a turbine-agitated vessel. (4fier Cutter.'®)

CALCULATION OF POWER CONSUMPTION.
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Power number N, versus Ny, for six-blade turbines. (After Chudacek'!; Oldshue.*®) With the dashed
portion of curve D, the value of N, read from the figure must be multiplicd by N,
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Power number N, versus Ny, for three-blade propellers. (After Oldshue.®) With the dashed portion
of curve B, the value of N, read from the figure must be multiplied by N7,
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Unbaffled tanks: TABLE 9.1
Constants a and & of Eq. (9.19)

N, : )
N = I){’(Nkea SI: SZ: AR Su) Figure Line @ b
F
i 9.12 D 1.0 400
= log,o N, 913 B 17 180
b
TABLE 9.2

Effect of blade width and clearance

on power consumption of six-blade
45° turbines'"®

W/D,, (S‘) Clearance, Sz Kr

03 0.33 20

0.2 0.33 1.63

0.2 0.25 174

0.2 0.17 191

TABLE 9.3 For laminar flow(Nre<10):
Values of constants K; and K7 in Egs. (9.21) and K,

(9.23) for baffled tanks having four bafles at tank Np= Ny
wall, with width equal to 10 percent of the tank

diameter
Type of impeller K, Ky For fully turbulent flow (Nre>10000):
Np = Ky
Propeller, three blades
Pitch 1.0%° 41 0.32
Pitch 1.5% 55 0.87
Turbine
Six-blade disk®* (S, = 0.25, 5, = 0.2) 65 575
Six curved blades*® (5, = 0.2) 70 4.80
Six pitched blades?? (45°, 5, = 0.2) — 1.63
Four pitched blades®* (45°, S, = 0.2) 44.5 127
Flat paddle, two blades*® (5, = 0.2) 36.5 170
Anchor®? 300 0.35




POWER CONSUMPTION IN NON-NEWTONIAN LIQUIDS.
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FIGURE 9.14
Power correlation for a six-blade turbine in non-newtonian liquids.

BLENDING AND MIXING
For a standard six-blade turbine:

D
q = 0.92nD3 (mi)
D, (9.30)
5V _aDH |
ly m— =35 e
q 4 092nD.D, ©.31)

%) (3)
ntp| ==} { =} = const = 4.3
T(D[) H 9.32)

A general correlation given by Norwood and Metzner is shown in Fig. 9.16.
The Froude number in Eq. (9.33) implies some vortex effect, which may be present
at low Reynolds numbers, but it is doubtful whether this term should be included

for a baffled tank at high Reynolds numbers. When Ny, > 10%, f; is almost constant
at a value of 5.

i (nbg}Z!Bgl,JGDg,‘z Da 2 Dr i/2 L6
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Mixing times in agitated vessels. Dashed lines are for unbaffed tanks; solid line is for an unbaffled tank.
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Correlation of blending times for miscible liquids in a turbine-agitated baffled vessel, (After Norweod
and Metzner>®)



The propeller data in Fig. 9.15 were taken from a general
correlation of Fox and Gex,!'® whose mixing-time function differs from both Egs.
(9.32) and (9.33):

£ (nD2)2f2 16 D \32/p Ntz 1/6
F= rin a)z R 0 b L 934
H'?p, D, H n°D,

Their data were for D,/D, of 0.07 to 0.18; the extrapolation to D,/D, = 4 for Fig.
9.15 is somewhat uncertain.

JET MIXERS.
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Flow of a submerged ciecular jet. (4fter Rushton and Oldshue.*?)

X
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where g, = volume of liquid entrained per unit time at distance X from nozzle
qe = volume of liquid leaving jet nozzle per unit time




SUSPENSION OF SOLID PARTICLES
Nearly complete suspension with filleting,

Complete particle motion.
Complete suspension or complete off-hettom. suspension.

Uniferm suspension.

Zwietering's  correlation is based on data for five types of impellers
in six tanks from 6in. to 2ft in diameter. The critical stirrer speed is given
by the dimensionless equation

Ap\0*s
HCDE.SS — SvO.EDg.Z (g ____) 30.13 (9.36]
i)

where n, = critical stirrer speed
D, = agitator diameter
§ = shape factor
v = kinematic viscosity
D, = average particie size
§ = gravitational acceleration
Ap = density difference
p = liquid density
B = 100 x weight of solid/weight of liquid

Typical values of § are given in Table 9.4.

*(Most reliable for scale-up or for predicting the condition of suspebsion in the absence of

experimental dara))

TABLE 9.4
Shape factor § in Eq. (9.36) for critical

stirrer speed

Impeller type b,/D, D,/E 8§
Six-blade turbine 2 4 4.1
D/W=5 3 4 1.5
Np=6.2 4 4 115
Two-blade paddle 2 4 4.8

DWW =4 3 4 8
Np=25 4 4 12.5
Three-blade propeller 3 4 6.5
Np=035 4 4 8.5
4 2.5 9.5
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Power required for complete suspension of solids in agitated tanks using pitched-blade turbines.

DISPERSION OPERATIONS
CHARACTERISTICS OF DISPERSED PHASE; MEAN DIAMETER
aND3 z_ LYY
p_ Wy TEN D r= o ‘Dp E—
6 a
volume-surface mean digmeter or the Sauter mean diameter.

o
1
= |2

GAS DISPERSION; BUBBLE BEHAVIOR
where p; = density of liquid
D3 pv = densify of vapor
F,—F, = g L{pr — py) F, = total buoyant force

g 6 F, = force of gravity

6D ,0 13
D,= HJ where D, = orifice diameter
) ¢ = interfacial tension

GAS DISPERSION IN AGITATED VESSELS.
for gas dispersion in pure liquids by a six-blade turbine impeller.
For low gas holdups (¥ < 0.15)
D, :2-5mm = (09 oo
D, =415——""—— P2 L 09
) T gt T
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Interfacial area (L/mm): (Pa./V)pl? I";)”z

a =144 —
({J’g‘. 0-6 ut
V¥ ij2 0.4 0.2 L2
U (7g.)" U
In these three equations all quantities involving the dimension of length are in millimetres (mm).

where ¥, = superficial velocity of gas
= volumetric gas feed rate divided by the cross-sectional area of vessel
u, = bubble rise velocity in stagnant liquid

Usualy: u, =0.2m/s

POWER INPUT TO TURBINE DISPERSERS.
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Power consmmption in aerated turbine-agitated vessels.

GAS-HANDLING CAPACITY AND LOADING OF TURBINE IMPELLERS.
From data for tanks 1.54 and 0.29 m in diameter and velocities up to 75 mm/s,

- PN/ D\
Vo =0114 (2 -~
o)

SCALEUP OT AGITATOR DESIGN.
In geometrically similar vessels:

P oc nsDa2
\Y

B
)

ALt
n2

Dy
D

A3
FHow Past Immersed Bodies

10

a2

(P,/V) is in W/m?3, D, in m, and V,, in mm/s.
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FIGURE 7.1
Wall drag and form drag on immersed body.
_ Fyl4,
P pudf2g,

A, . Theareaobtained by projecting the body on a plane perpendicular to the direction of flow

EQUATIONS FOR ONE-DIMENSIONAL MOTION OF PARTICLE THROUGH
FLUID.

F = a, F,= mpa, Fy= Cpugpd, a, =g or a, = rw?
‘ 9. Ppde 29
2
T‘@:FE_Fb_FD = ?E=ae_EEE_CDupAp=aepp_p_CDuszp
g. dt de P 2m 2, 2m

Terminal velocity: L S8, — pm o W
1 APpPCDp App_pCDp
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Drag coeflicients for spheres.

MOTION OF SPHERICAL PARTICLES.

" = f4g(pp_p)Dp
‘ 3Cpp

For Ng., <1.0:
Cp 2t oo 3rpu D,
Nrer ? ge
For 1000 < N, , <200,000:
Cp =044 P 0.0552D%ulp
=g

CRITERION FOR SETTLING REGIME.

_ 1/3
Ko Dp[gp(p;2 ﬂ):|

10>

Nee,p=LUp tg o/

. gpi(pp - p)

Uy = 18 Stoke’ slaw

u = 1.75 \/M Newton’s Law
P

For K < 2.6: Stoke'sLaw
For 68.9 < K < 2360: Newton’'s Law
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Drag coefficients for spheres, disks, and cylinders. [By permission from J. H. Perry (ed.), Chemical Engineers’ Handbook, 6th ed., p. 5-64. Copyright,
© 1984, McGraw-Hill Book Company.]



FRICTION IN FLOW THROUGH
BEDS OF SOLIDS
Dy = (6/D,)(s,/v,)

TABLE 28.1
Sphericity of miscellaneous materialst

Material Sphericity Material Sphericity
Spheres, cubes, short Ottawa sand 093
cylinders (L = D) 1.0 Rounded sand 0.83
Raschig rings (L = D) Coal dust 0.73
L = D, D; = 05D, 0.58% Flint sand 0.65
L = D, Dy = 075D, 0.33% Crushed glass 0.65
Berl saddles 0.3 Mica flakes 0.28

1By permission, from J. H. Perry (ed), Chemical Er:gineers’ Handback, 6th ed., p. 5-34,
McGraw-Hill Book Company, New York, 1934
§ Calenlated value,

For granular solids, @, ranges from 0.6 to 0.95.
&
Beq = %(I)EDP

1—¢

For the typical void fraction of 04, D, = 044®.D,, or the equivalent

diameter is roughly half the particle size, _
¥ average velocity in the channels ¥

7=l
& . —_
superficial or empty-tower velocity ¥
the Kozeny-Carman equation Ap  150V,u (1 — ¢)?
L g@p2 &
the Er ti — 57
e Ergun equation % ~ 150V (1 —8? L75pV31—e
L gDz ¢ gd,D, &
the Burke-Plummer equation Ap 1.75,0?% 1—¢
L g9D, &
. TABLE 7.1
MIXTURES OF PARTICLES] Void fractions for dumped packings
n
Z N ,-D:,; _ 1 DD, ¢ for spheres & for cylinders
5 = i-—_wl-—u—-————n——— D s =
= "X 0 0.34 034
Y NDL 2 0.1 038 033
i=1 i=1 D pi 0.2 0.42 0.39
0.3 0.6 045
0.4 0.50 0.53
0.5 0.55 0.60

N.. . <1

Re p

10 < N, , <1000

Re, p

Nre.p > 1000

14



HINDERED SETTLING.
Uy = “t(s)ﬂ
5

2
0.1 1 10 102 10°

Npe.p = Dolip/H
FIGURE 7.7

Plot of exponent » versus Ny, ,
For suspensions of free-flowing solid particles, the effective viscosity u, may
be estimated from the relation!®

#1051 -2

p 3 (747

Equation {7.47) applies only when £ > 0.6 and is most accurate when & > 0.9.

SETTLING AND RISE OF BUBBLES AND DROPS.

32
/|
26 ,/
24 Alr in water——T

16]_5:::}@;

. /
.‘!
law
J/
] /
t 1 Rigid sphere
'

[~ {calculated from Fig. 7-6)
/

&
/

RISE VELOCITY, em/s

00 1 2 E 4 5 7 a8 10
BUBBLE DIAMETER, mm
FIGURE 78

Rise velocity of air bubbles in water at 70°F. [ By permission, data taken from J. L. L. Baker and B. T.
Chao, AIChE J., 11:268 {1965}.]
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FLUIDIZATION

Air

FIGURE

T IJL

Ap

79

Fixed bed -

PRESSURE DROP AND BED HEIGHT

== Fluidized bed
L c
]
)
4p _Wit. of bed
o

SUPERFICIAL VELQCITY, ¥,

Pressure drop and bed height vs. superficial velocity for a bed of solids.

MINIMUM FLUIDIZATION VELOCITY.
Generally:

ap=2(1~e)p, — o)L

Apg. 150uV, (L — &)

&

1.75pV3 (1 — &)

L

©0D2

g

3

€[>st53

for the minimum fluidization velocity Vo

Ap g

7. (1 ~ &ylp, — p)

[

1500V (1 — £y) + 1.75pV 8 1

©2 D2

Er

For very small particles, only the laminar-flow term of the Ergun equation
is significant.

In the limit of very large sizes, the laminar-flow term becomes negligible

For small sphere particles or

N.. . B <1

Re,p

For large sphere particles or

1000 < N

Re p :

%, 833(1 — &)
Vou @,
W 232
_DM B ?;E

16
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FIGURE 7.10
Minimum fluidization velocity and terminal velocity with air at 20°C and 1atm (g, = 0.50,®, =
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TYPES OF FLUIDIZATION..

Particulate fluidization.
Bubbling fluidization.
EXPANSION OF FLUIDIZED BEDS. Ap g
7 = 4k —p
e
Particulate fluidization.
Particulate fluidization. For particulate fluidization the expansion is uniform, and
the Ergun equation, which applies to the fixed bed, might be expected to hold
approximately for the slightly expanded bed.
Assuming the flow between the particles islaminar - & 150F,u

1—& glp, — p)OD]

1 —gy
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Bed expansion in particulate fluidization. [ By permission, data iaken from R, H. Wilhelm and M. Kwauk,
Chein. Eng. Prog., 44: 201 (1948).]
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FIGURE 7.12

Variation of porosity with fiuid velocity in a fluidized bed. [By permission, data taken from R. H.
Wilhelm and M. Kwauk, Chem. Eng. Prog., 44:201 (1948).}
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Exponent m in correlation for bed expansion [Eq. (7.59)]. (By permission, from M. Leva, Fluidization,
p. 89. Copyright, © 1959, McGraw-Hill Book Company.)
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Bubbling fluidization.
Vo = fithy + (1 — i) Vonr

Ly = L{1 — f}
where f, = fraction of bed occupied by bubbles i Uy Vou
u, = average bubble velocity L - Uy — ’V“O
u, 2 0.7 /gD,
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Compressible Flow

Perfect-gas Relationships.

= h=u 1 ¢
Cp ¢+ R + p/p Tds = du + pd - k=22
p Cr
()]
S:— & = & In
2 1 v [Tl
For isentropic processes: The poelytropic process
:Zi" = constant T, Pa N1 p2\F1 f—n = constant
& T, P: P
The bulk modulus of elasticity. B dp
¥ is the volume of fluid subjected to the pressure change dp av/¥
Mach number. \/% \F‘{
. ¢ = — = i,
M= ¥y dp e
¢
Isentropic Flow.
Euler's equation Vdav + d _ 0
the continuity equation. pAV = constant
dd _ A/V? A
w—'f(c—z— ') “y M-
The assumptions underlying this equation are thag the flow is steady and
frictionless.
V2 Eopoo, Ve k Ve k
— —1 = constant LSRNV I R
2 TE=1p+" : s Y i, 2 TF=1pm
For adiabatic flow from a reservoir where conditions are given by
Po, po, T, at any other section '
Ve kR B oV %R(To—T) 2 (T,
g " F=1 =D Mg"?‘(k—l}km"k_—"(ﬁ"‘_l)
Ty _ i'.-—l o (1+k—1M)*m’”
? =14 -——=—M ? —5
(1 " ‘ri_,l_ Mz)mk 1
p
Flow cnnd:twnb are termed critical at the throat section when the
velocity there is sonic. Sonic conditions are marked with an asterisk.
M_I c* = V* = VVERT*,
I G LV I T R (O 72 R
l MNT, N 3 M (k+1)/2 2 pp (k+ 1)/2
A

_ [(k — 1)/2]M2) te+Di2te—1)
A*_M[ (k 4+ 1)/2 }

1/{k—1) A
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For subsonic flow throughout a converging-diverging duct, the velocity D 9 k! (k=13
at the throat must be less than sonic velocity, or M, < 1 with subseript ¢ == i 1
indicating the throat section. The mass rate of flow 7 is obtained from Po v

| k 2k =17k
o= VA = A\ [2pope g (1%) [1 - (5) J (6.3.24)

For maximum mass flow rate, the flow downstream from the throat
may be either supersonic or subsonic, depending upon the downstream
pressure.

E 2k I__ 2 (k= 11k _ t_l __2_. (k12 k—1 ‘4* ?
Po \ =32 [ A

Shock Waves.

Continuity: G = gﬁ = P1V1 — sza
Energy: E _ Kz_.z — — E k_._B
5 + h = 5 +hz—hn—.2 +k—1p
momentum (p1 - pg)A = pzA Vf — p1AV12
M, M, =1
the Rankine-Hugoniot equations -
p2 _ (5 + 1)/(k — 1)](ps/pr) ~ 1
™ [k + 1)/(k = D] = pa/;1
. pr _ L+ [k + D)/(k = Dipa/ps _ Vs
Fig. 6.2, Normal compression shock A ((k + 1)/(k = DI+ ps/p1 Vs
wave. ‘
B ~ - —
| N\
Pq ——— PE
T
- ' T Py

‘\‘.. \\\\ s |
o \\ \\.‘\. . ) Regime 1
a1 I —
- N o
é P, r T‘—‘—‘—“I ?_’ (d} *‘
3 | e |
Regime 2
_ !
. Distance along nozzle Distance along nozzle
'qure , , Pressure profiles for compressible flow
Pressure profiles for compressible flow through a convergent nozzle th a convergent—divergent nozzie
rough
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Adiabatic Flow with Friction in Conduits,

Jo7Dx o F eV PV ay — o
T " p 2D p P
M_J !p-l-;.; Gx)A Vi Mi‘]ﬁ’
v—st Ea— 1 ’
1 1
e &z
ar _ .. av av dM/M dp _
T M2k — 1) Vv Vo [k=1D/2M? + 1 p
! gy = 2(1 — M?) Mo 24M kA1 dM
D™ T AMM[(k - n/2IME — 11 R MB k- M{[(k — 1)/2]M° + 1]

To avoid shock wave: M=1

(k—1M2+1 dM

[(k—1)/2M:+1 M

Frictionless Flow through Ducts with Heat Transfer.

Continuity: G = % = oV
Momentum p + pV? = constant
Energy: Vot — V2 Ve — Vit
q::=hz‘—h1+*i~T-l—=c,(Ta—T1)+-j—TL
= Gp(Tuz - TOI)
T4 and T are the isentropic stagnation temperatures, i.e., the tempera-
ture produced at a section by bringing the flow isentropically to rest.
' Py _ 14 KMy
P2 - 1 + kM12
T _ . M,?
=l k=1
T . M,*
o=+ k-

Ty

Ty _ (My14 kMg
M. 1+ kM,®

y

24 (k- 1)M;?

G =pV=constant Tor

> 5

F1a. 6.5. Rayleigh line.

Ta M, 1 4+ kM;?
M: 1+ kM,

2+ (k ~ )My?
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Steady, Isothermal Flow in Long Pipelines.

Equation of state: 1_’ = constant (_12 _ d;p
P P
Momentum dp f pV? pV
— + —dr +—dV =0
p 2D p »
Continuity: pV = constant
Energy T, = T[l 4 % ; 1) Mz]
Stagnation pressure po = p (l n k _2_ 1 ME)H(&—!)

in which p, is the pressure (at the section of p and M) obtained by
reducing the velocity to zero isentropically. )

— dV  dM  dM? oV o, Vav _ & e
V=cM=+kRTM vV~ on pde-—m, = g MdM = kM dM
N PV M
> - kT =M
dp _dp _ _dV _ _1dM* = kM® fdz
» VT 2MF T T-—kM:2D
ATy k1 o dTy _ Kk = DM fds
Ty ~ 3+ (k — DM? Te (1 — kM2 F (k— )M? D
dpo 2 — (k4 1)M?  EM?® fdx f 1 — kM2
20 24 (k- DMPEM® — 1 2D D Lows = — gy~ + In (WM?)

The superseript * indicates conditions at M = 1/4/k, and M and p
represent values at any upstream section.

p*‘__ _V_“= 1

Fluid measur ement

Bernoulli’s equation

V,
L+B+z:const.

29 7y
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