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Appendix B

The Fluxes and the Equations
of Change |

§B.1
§B.2
§B.3
§B.4
§B.5
§B.6
§B.7
§B.8
§B.9
§B.10
§B.11

Newton’s law of viscosity

Fourier’s law of heat conduction

Fick's (first) law of binary diffusion

The equation of continuity

The equation of motion in terms of 7

The equation of motion for a Newtonian fluid with constant p and
The dissipation function @, for Newtonian fluids

The equation of energy in terms of q

The equation of energy for pure Newtonian fluids with constant p and k
The equation of continuity for species « in terms of j,

The equation of continuity for species A in terms of w, for constant p%

§B.1 NEWTON'S LAW OF VISCOSITY

[r=—uw(Vv + (V" + G — )V - v)3]

Cartesian coordinates (x, y, z):

in which

a0,
Ta= —p 252+ Gu = 0V V)
[ v,
Ty = —i 2?;? + Gu — )V v)
= 31’);
o= —u 25|+ Gr -0 V)
_ _ ‘t;'b‘y n avx_
T.ry = Tyr = :u_ax ay_
2 5 v, |
Tye = Ty = P«_W E_
o nav,. i 69;
Tox = Tez = p'_‘ 9z ax“
du, 9y  gu,
. L R
2 ax ay . Jz

(B.1-1)

(B.1-2)

(B.1-3)"

(B.1-4)

(B.1-5)

(B.1-6)

(B.1-7)

* When the fluid is assumed to have constant density, the term containing (V - v) may be omitted. For
monatomic gases at low density, the dilatational viscosity « is zero.

843



844 Appendix B Fluxes and the Equations of Change

§B.1 NEWTON’S LAW OF VISCOSITY (continued)

Cylindrical coordinates (r, 8, z):

in which

o |.a 197,
T = Tor = P’-rar( )+Fﬁ:|

1 av, &vo
To: = Top = MK ¥ 39

_av,. dv,
Ta =T =~ o=+ 20

1 c9vy+ v,

Va= T

|

d
t;_( r)+

(B.1-8)"

(B.1-9)

(B.1-10)"

(B.1-11)

(B.1-12)

(B.1-13)

(B.1-14)

* When the fluid is assumed to have constant density, the term containing (V * v) may be omitted. For
monatomic gases at low density, the dilatational viscosity « is zero.

Spherical coordinates (v, 8, ¢):

in which

T!! =

Tan

Tt =

qug,

Ter

(v

cy) =

[ o
o 2ﬁ] I — T

au,
—K (%_6 %)] + Gu — )V - v)

3 3% v, + v, cot 6
i-L r sin 6 d’qb r

)] - (;,u. —k)(V-v)

=T = - a vﬂ +l&
M ar r a9

ey = _ylsin@a( T ) 1 90
o= "7 36\sin 8) " 7 sin 6 94

1 9y a (Ve
- +
it 'u‘[r sin 6 9p | dr (f)]

1
r sin 6 30

] avd:

& =%
¥ sin 6 dep

2

(r ) + {v,; sin 0) +

.1
Q;|Q_‘

(B.1-15)"

(B.1-16)"

(B.1-17)"

(B.1-18)

(B.1-19)

(B.1-20)

(B.1-21)

* When the fluid is assumed to have constant density, the term containing (V * v) may be omitted. For
monatomic gases at low density, the dilatational viscosity k is zero.



§B.2  Fourier's Law of Heat Conduction

§B.2 FOURIER’S LAW OF HEAT CONDUCTION"

845

[q = —kVT]
Cartesian coordinates (x, vy, z):
i BT 2
4= —k>; (B.2-1)
o i
9 = —k 3y (B.2-2)
I %
q. = —k 2% (B.2-3)
Cylindrical coordinates (r, 6, 2):
iy gl ¥
, k= (B.2-4)
_ 14T
Ja = k T 3_9 (8.2-5)
O ?
g.= —k o~ (B.2-6)
Spherical coordinates (r, 0, ¢):
_ 9T ¥
= —k ar (B.2-7)
- 14T
Qs = _k? 90 (B.2-8)
= — ] ﬂ-‘ -
94 7 sin 0 3¢ (B.2-9)

* For mixtures, the term ):,,{Ffo,/ M,)j,, must be added to q (see Eq. 19.3-3).
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§B.3 FICK’S (FIRST) LAW OF BINARY DIFFUSION"
4= —p2asVw,]

Cartesian coordinates (x, y, z):

Jax = —993,45%;—" (B.3-1)
jay = _p%aaa—“; (B.3-2)
jaz = —PDap a{% (B.3-3)

Cylindrical coordinates (r, 6, z):
jar= —p%a% (B.3-4)
jao = —PDsg ,1.- at::; (B.3-5)
he = _P@AB% (B.3-6)

Spherical coordinates (r, 8, ¢):

jr= = Ban ar (B.3-7)
T -p@,w];‘% (B.3-8)
Jas = —PDap T en P ‘i::; (B.3-9)

® To get the molar fluxes with respect to the molar average velocity, replace j,, p, and w, by J}, ¢, and x,,.

§B.4 THE EQUATION OF CONTINUITY"
[dp/at + (V- pv) = 0]

Cartesian coordinates (x, y, z):

L r 9 g - 5
Jt + ax (va) T ay (Pf-’y) T oz (Pvz) - 0 (B-4 ])

Cylindrical coordinates (r, 6, z):

14 19 =
E 2k Tar (prv,) + ¥ _9 (pvy) + 9z (p’Uz) =0 (B.4-2)
Spherical coordinates (r, 0, ¢):
9 (o)) + 9 (o0 sin 0) + —— 2 (pp,) =0 (B.4-3)
,zar r meae ’ rsin ¢ " ¢ '

* When the fluid is assumed to have constant mass density p, the equation simplifies to (V- v) =



§B.5 The Equation of Motion in Terms of 1 847

§B.5 THE EQUATION OF MOTION IN TERMS OF 7
[pDv/Dt = —Vp — [V - =] + pg]

Cartesian coordinates (x, y, z):"

g, oo, av, o) _ dp [a J J
p( ot + v, 3).‘ o Uyg}}' + v, 52'.) = 1_3; _a—x' Top T+ @ Ty o 1-9-2' T:_‘_ o Pe, (B.5-1)
v v v v a [ )
D LR W B IV I N ) _
p( o T U T 3y + v, 62) =% | ix Toy F 3y Tyt 5 sz_ +pg, (B.5-2)

av, v, av, av, ap J 3 g
p( g7 + v, o + v, y v, 72—) i _E Tt 3y Tt = -r:z_ +pg. (B.5-3)

? These equations have been written without making the assumption that 7 is symmetric. This means, for
example, that when the usual assumption is made that the stress tensor is symmetric, 7, and 7, may be
interchanged.

Cylindrical coordinates (r, 6, z)

v, v,  v9Y, v, U p |14 14 a Too
i e i B Tl 7 ) [ -t SRS LA YL 'S 5~
”( t UG T ez T ar |Tar ) tragTet oz T [T es (B.5-9)
dvy av, vy dy, vy U\ 1 6‘p 3 Tor — Trn
p( T + v, T T + v, % hE] S s i r2 e (r Tra) + 5 69 62 Tt > + pgy (B.5-5)
dv, dv, v, du, duv,\ _ dp 14 g g
p(ar Yo tTae T wm)T w |rar" '=)+ras""*+ gz = | T P8 {B:eb)

" These equations have been written without making the assumption that 7 is symmetric. This means, for example, that when the usual
assumption is made that the stress tensor is symmetric, 7,4, — 74, = 0.

Spherical coordinates (v, 0, ¢):*

v, av,+v9 o’-‘v,+ vy v, Ut _ 9
Pt "% ar T 738 rsin 6o r )T "o

14 1 1 P Tow T Tos
- [;5 (rr) + r sin 0 30 5 (o sin ) + rsin 6ap ¥ %] i B

(avu By Vv Vs BV, O v’ cot 8) _ 19

ST ey T bl
P\at "% er T T a0 rsinaa¢+ r 7]
i | a (TH,. = T,u) = Tlf?t‘b cot 9
[:rB ar (rsTm) r sin 6 68 (Tgu sin 6) Si‘n 0 E Too + ¥ + P8y (85‘8)
av, dv av, vy v, U, + Vv, cot 8 d
at ar r g rsin @ 6¢ r "y sin @ dop
1 3 {Ttbr - Trda) + Too cot 6
+ — + ;
(:rsa (1’3 Hb) r sin 3 68 (Tg¢ sin 6) S B&d) Tepds r PS4 (B 5-9)

 These equations have been written without making the assumpticm that 7 is symmetric. This means, for example, that when the usual
assumption is made that the stress tensor is symmetric, 7,, — 75, = 0.
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§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID

WITH CONSTANT p AND n
[pDv/Dt = —=Vp + uVv + pgl
Cartesian coordinates (x, y, z):
oo O v dv _ 9p [ 6%, N v, i Pv, .\ BED
P\or TP T Y ay 2] ax T H Lo " ap | a2 P8x -6-
av Jv, av, au ap [ 9% d° v, a v
y y v\ _ % . y
p(ar T ax+"v5y+"=z)‘ oy T e yz ] +tpg (B62)
v, v, v, o\ _ dp  [d, v, v,
p(g; oo vy?y— UZ-E) = E+”_ax2 + Py + P +pg.  (B.6-3)
Cylindrical coordinates (r, 0, z):
v, v, vydv,  dv, V) _ dp a1 1%,  d'v 2
"(E”’ﬁ? T "z r)" o "M ar\rar ") Y ase t oz T2l B
Iy dvy Uy IV, SR E A ap a1 a 1 8% a v,; 24
P(ﬁ“‘r; T ety )‘ 796t M ar\rar 00 ) 5ot r2 | toes (BES)
du, v, v, v, v, ap 19 ( dv.\, 1. v,
p(at or T T a0 ‘dz)_ Ea [Fa_ e e s o g (B.0:6)
Spherical coordinates (r, 6, ¢):
av, N v, v, v, Vs v, v + 5 _ 9%
P\at "% ar "7 39 " 7 sin 0 99 )T Tar
1 8 148 ( , av,) 1 o“zv]
+ u| =% () + =\ sin 0 — | + ————| + pg, (B.6-7)"
u[ﬁ 6r2( ) r? sin 9 90 d6 ) r? sin?0 a¢? P8
R, GV VU Ve 30 O v cot 0\  1dp
P\ot "% T T 38 " ¥ sin 69 r T
19(29),14( 1 19 209 2 cot § W
=2 1Py i B & LB R P 6
"‘[,z ar (’ ar) P ae(sm g 36 Yo Sin 9)) FeinZ0 o 1200 risingob| S (B.6-8)
v, vy v, 9, v,  dU, V40, + Vg0, cot O 1 dp
+ L it — = —
Aot "% ar "7 96 7 sin 69 r r sin 6 9
19 (2)\ . 14( 1 1 P 2 v, 2 cot § 9
+ul=Z P2+ = — - 6~
#[rz ar (,-2 3’) r 39(5“‘ 5.ag o S 8}) r?sin?0 dp> r?sin 9 r? sin 0 IP * 30 (B9

* The quantity in the brackets in Eq. B.6-7 is not what one would expect from Eq. (M) for [V - Vv] in Table A.7-3, because we have added
to Eq. (M) the expression for (2/r)(V » v}, which is zero for fluids with constant p. This gives a much simpler equation.
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§B.7 THE DISSIPATION FUNCTION ®v FOR NEWTONIAN
FLUIDS (SEE EQ. 3.3-3)

Cartesian coordinates (x, y, z):

v, N (oo \2] [dv, av ]2 [av. v [ov, ov.2 2[00, v, av,]?
b, 2[(ax) +(@) +(E)]+lﬁ+ 3y + 5@‘4’7;}' + _'67+E -3 §‘£+§+T}}' (B.7-1)

Cylindrical coordinates (r, 8, z):
-
_ dv.\2  [1dv, 7, av, \? 2 (v 19v, |2 1dv, dug | v, dv. |?
d’“*z[(ar) +(r 90 ) +(6z) Tar\7) 70| |70 Taz| Tz o

av, v |?
% [l ai (rv,) + 1?_9 ] (B.7-2)

Spherical coordinates (v, 6, ¢):

av, \* (1dv, v, \? 1 vy v, + v, cot B2
=2l — —— 47 —_—
. 2[(6:‘) ¥ (?’ o 1) T\7 sin 0 d¢ r

J 109, sinf g ( Yo 1 9y 1 4y, a (Vs
[a_ Fe]+[ 7 &6(5in8)+rsin86¢]+ rsin0ap ar\T
2113 2 1 1 9% !
3[rzar(rv,.)+ Bﬁﬁ(v,,smﬁ) 7oin 0 9% (B.7-3)

§B.8 THE EQUATION OF ENERGY IN TERMS OF q
[pC,DT/Dt = —(V - q) — (3 In p/d In T),Dp/Dt — (x:Vv)]

Cartesian coordinates (x, y, z):

sfal . dT o 9T 5 df 9 9y  99.| (dInp @ - ,
pCp(ar " Y ox * 05y ay t o az) [dx * oy ay * 32"] (a InT/, NG (B.8-1)

Cylindrical coordinates (r, 6, z):

aT . dT , Y dT aT\_ |14 199 | 94: dln p\ Dp ;
PC (61‘ + v v, 0"]’ + — pr ﬁﬂ + v, 62) [?E(rqy) + F 20 =k E] (a nT E (‘T Vv) (BB-Z)

Spherical coordinates (r, 6, ¢):

_ AT  VedT , % JT\_ |14 1 1 % dln p\ Dp
pcp(ﬂt+v"c?r+T@+r5in B&d))_[ 2dr (rig) + r sin 868(% sty )+ r sin 86‘¢] (cﬂn T) vy
(B.8-3)"

" The viscous dissipation term, —(1:Vv), is given in Appendix A, Tables A.7-1, 2, 3. This term may usually be neglected, except for
systems with very large velocity gradients. The term containing (d In p/d In T),, is zero for fluid with constant p.
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§B.9 THE EQUATION OF ENERGY FOR PURE NEWTONIAN

FLUIDS WITH CONSTANT" p AND k

[pC,DT/Dt = kV°T + ud,]

Cartesian coordinates (x, y, z):

2 2 2
pC(aT vA§T+v 5—T+vz£)=k 2l i | 6’{]%-#(1)3

- B.9-1)!
Y oy 9z ox* Pt oz (B.2-1)
Cylindrical coordinates (r, 8, z):
s (oT | T  veaT . oT\_, 10 (. oT\, 18T, &#T ,
”CP(E YO v 6_2) B k_?E( 5r) M T ] tnd, B2
Spherical coordinates (v, 8, ¢):
aT T  ©dT . Y 9T\ _ |19 (9T 1 8 e 48T &T b
C(ar* Yiar T3  ram ea«p)“k ,,zar( ar)+r2 sin eae(sme 7 sinlea¢2]+“¢"" i

# This form of the energy equation is also valid under the less stringent assumptions k = constant and (¢ In p/¢ In T) ,Dp/Dt = 0. The

assumption p = constant is given in the table heading because it is the assumption more often made.

® The function @, is given in §B.7. The term u®, is usually negligible, except in systems with large velocity gradients.

§B.10 THE EQUATION OF CONTINUITY FOR SPECIES «
IN TERMS*® OF j,

[pDw,/Dt = —=(V+j,) + r,]

Cartesian coordinates (x, y, z):

dw‘, 60),, 6(!-'“ 6&)‘, _ _‘;jux ‘ﬁuy 6j“:

(at T % Ty T % 62)_ ox "oy Tz AR
Cylindrical coordinates (r, 8, z):

w, dw, vy dw, dw,\ _ (14, 1%us | o

(Gt 5+ e, 32) v ar Vo) + 7 55 * H?
Spherical coordinates (r, 6, ¢):

dw, dw, Uydw, Vg dw,\ _ 1 1 s
9(7 + Yy +5 a0 s r sin 6 5¢) - [ 2 gr r%jop) + rsm&&& rsinfl do Wi (P00

* To obtain the corresponding equations in terms of J;; make the following replacements:

Replace p w, Ja v s

N
by c X, } b v* R.—x, 2 R,



